Search results for "Prefrontal cortex"

showing 10 items of 323 documents

Cognitive network hyperactivation and motor cortex decline correlate with ALS prognosis.

2021

We aimed to quantitatively characterize progressive brain network disruption in Amyotrophic Lateral Sclerosis (ALS) during cognition using the mismatch negativity (MMN), an electrophysiological index of attention switching. We measured the MMN using 128-channel EEG longitudinally (2-5 timepoints) in 60 ALS patients and cross-sectionally in 62 healthy controls. Using dipole fitting and linearly constrained minimum variance beamforming we investigated cortical source activity changes over time. In ALS, the inferior frontal gyri (IFG) show significantly lower baseline activity compared to controls. The right IFG and both superior temporal gyri (STG) become progressively hyperactive longitudina…

0301 basic medicineAdultMaleAgingmedicine.medical_specialtyMismatch negativityPrefrontal CortexElectroencephalographyAudiologybehavioral disciplines and activities03 medical and health sciences0302 clinical medicineCognitionmedicineHumansAttentionCognitive DysfunctionAmyotrophic lateral sclerosisAgedAged 80 and overHyperactivationmedicine.diagnostic_testbusiness.industryGeneral NeuroscienceAmyotrophic Lateral SclerosisMotor CortexCognitionElectroencephalographyMiddle Agedmedicine.diseasePrognosisTemporal LobeElectrophysiology030104 developmental biologymedicine.anatomical_structureCross-Sectional StudiesDisinhibitionFemaleNeurology (clinical)Geriatrics and Gerontologymedicine.symptombusiness030217 neurology & neurosurgeryDevelopmental BiologyMotor cortexNeurobiology of aging
researchProduct

Different Brain Circuitries Mediating Controllable and Uncontrollable Pain.

2015

Uncontrollable, compared with controllable, painful stimulation can lead to increased pain perception and activation in pain-processing brain regions, but it is currently unknown which brain areas mediate this effect. When pain is controllable, the lateral prefrontal cortex (PFC) seems to inhibit pain processing, although it is unclear how this is achieved. Using fMRI in healthy volunteers, we examined brain activation during controllable and uncontrollable stimulation to answer these questions. In the controllable task, participants self-adjusted temperatures applied to their hand of pain or warm intensities to provoke a constant sensation. In the uncontrollable task, the temperature time …

0301 basic medicineAdultMaleNociceptionAdolescentPainPrefrontal CortexStimulus (physiology)AnxietyBrain mappingbehavioral disciplines and activities03 medical and health sciencesYoung Adult0302 clinical medicineSensationmedicineHumansThermosensingPrefrontal cortexAnterior cingulate cortexInternal-External ControlPain MeasurementCerebral CortexBrain MappingGeneral NeuroscienceBrainArticlesMagnetic Resonance ImagingHealthy VolunteersDorsolateral prefrontal cortex030104 developmental biologymedicine.anatomical_structureNociceptionFemaleNerve NetPsychologyInsulaNeuroscience030217 neurology & neurosurgerypsychological phenomena and processesThe Journal of neuroscience : the official journal of the Society for Neuroscience
researchProduct

Right inferior frontal gyrus implements motor inhibitory control via beta-band oscillations in humans

2021

Motor inhibitory control implemented as response inhibition is an essential cognitive function required to dynamically adapt to rapidly changing environments. Despite over a decade of research on the neural mechanisms of response inhibition, it remains unclear, how exactly response inhibition is initiated and implemented. Using a multimodal MEG/fMRI approach in 59 subjects, our results reliably reveal that response inhibition is initiated by the right inferior frontal gyrus (rIFG) as a form of attention-independent top-down control that involves the modulation of beta-band activity. Furthermore, stopping performance was predicted by beta-band power, and beta-band connectivity was directed f…

0301 basic medicineAdultMaleRight inferior frontal gyrusComputer scienceQH301-705.5ScienceBiophysicsPrefrontal Cortexstop signal taskGeneral Biochemistry Genetics and Molecular Biologypre-supplementary motor areastopping03 medical and health sciencesBeta band0302 clinical medicineCognitionInhibitory controlReaction TimeHumansresponse inhibitionBiology (General)Response inhibitionMotor areaGeneral Immunology and MicrobiologyOscillationGeneral NeuroscienceQMotor CortexRMagnetoencephalographyCognitionGeneral MedicineMagnetic Resonance ImagingattentionInhibition Psychological030104 developmental biologyMedicineFemaleBeta RhythmNeuroscience030217 neurology & neurosurgeryPsychomotor PerformanceResearch ArticleNeuroscienceHumaneLife
researchProduct

Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mP…

2016

Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal n…

0301 basic medicineAgonistMaleDendritic spineArticle SubjectGlycoside Hydrolasesmedicine.drug_classDendritic SpinesPrefrontal CortexNeural Cell Adhesion Molecule L1NeurotransmissionInhibitory postsynaptic potentialbehavioral disciplines and activitiesSynaptic Transmissionlcsh:RC321-571Rats Sprague-Dawley03 medical and health sciences0302 clinical medicineDopamineDopamine receptor D2PhenethylaminesmedicineAnimalslcsh:Neurosciences. Biological psychiatry. NeuropsychiatryChemistryReceptors Dopamine D2Pyramidal CellsGlutamate receptorRats030104 developmental biologyNeurologynervous systemDopamine AgonistsSialic AcidsNeural cell adhesion moleculeNeurology (clinical)Neuroscience030217 neurology & neurosurgerymedicine.drugResearch ArticleNeural plasticity
researchProduct

Subchronic vortioxetine treatment -but not escitalopram- enhances pyramidal neuron activity in the rat prefrontal cortex.

2017

Abstract Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT 3 -R, 5-HT 7 -R and 5-HT 1D -R antagonist, 5-HT 1B -R partial agonist, 5-HT 1A -R agonist, and serotonin transporter (SERT) inhibitor. VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction in major depressive patients. Here we compared the effects of 14-day treatments with VOR and escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial prefrontal cortex (mPFC). Ten groups of rats (5 standard, 5 depleted of 5-HT with p -chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or with two doses of …

0301 basic medicineAgonistMalegenetic structuresmedicine.drug_classSerotonin reuptake inhibitorAction PotentialsPrefrontal CortexPharmacologyCitalopramSulfidesPartial agonistPiperazines03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicinemedicinePremovement neuronal activityAnimalsRats WistarSerotonin transporterPharmacologyVortioxetinebiologyPyramidal CellsAntagonistAntidepressive AgentsRats030104 developmental biologybiology.proteinAntidepressantVortioxetinesense organsPsychologyNeuroscience030217 neurology & neurosurgerySelective Serotonin Reuptake InhibitorsNeuropharmacology
researchProduct

Postnatal Antioxidant and Anti-inflammatory Treatments Prevent Early Ketamine-Induced Cortical Dysfunctions in Adult Mice

2020

Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1β), i…

0301 basic medicineAntioxidantketaminemedicine.medical_treatmentPharmacologylcsh:RC321-571Superoxide dismutaseLipid peroxidation03 medical and health scienceschemistry.chemical_compound0302 clinical medicineindomethacinmedicinelcsh:Neurosciences. Biological psychiatry. NeuropsychiatrycelastrolNeuroinflammationOriginal Researchchemistry.chemical_classificationprefrontal cortexReactive oxygen speciesbiologybusiness.industryGeneral NeuroscienceGlutathioneMalondialdehydeanimal models030104 developmental biologychemistryinflammationCelastrolredoxbiology.proteinbusiness030217 neurology & neurosurgeryNeuroscienceFrontiers in Neuroscience
researchProduct

Basal Forebrain Mediates Motivational Recruitment of Attention by Reward-Associated Cues.

2018

The basal forebrain, composed of distributed nuclei, including substantia innominata (SI), nucleus basalis and nucleus of the diagonal band of Broca plays a crucial neuromodulatory role in the brain. In particular, its projections to the prefrontal cortex have been shown to be important in a wide variety of brain processes and functions, including attention, learning and memory, arousal, and decision-making. In the present study, we asked whether the basal forebrain is involved in recruitment of cognitive effort in response to reward-related cues. This interaction between motivation and cognition is critically impacted in psychiatric conditions such as schizophrenia. Using the Designer Rece…

0301 basic medicineBiologyNucleus basalisArousallcsh:RC321-57103 medical and health sciences0302 clinical medicinemedicinePrefrontal cortexlcsh:Neurosciences. Biological psychiatry. Neuropsychiatrybasal forebrainOriginal ResearchBasal forebraincognitive effortGeneral NeuroscienceSubstantia innominataCognitionmedicine.diseaseDiagonal band of Brocainhibitionsustained attentionreward-associated cues030104 developmental biologymedicine.anatomical_structureSchizophreniaDREADDNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in neuroscience
researchProduct

Chronic benzodiazepine treatment decreases spine density in cortical pyramidal neurons.

2015

The adult brain retains a substantial capacity for synaptic reorganization, which includes a wide range of modifications from molecular to structural plasticity. Previous reports have demonstrated that the structural remodeling of excitatory neurons seems to occur in parallel to changes in GABAergic neurotransmission. The function of neuronal inhibitory networks can be modified through GABAA receptors, which have a binding site for benzodiazepines (BZ). Although BZs are among the most prescribed drugs, is not known whether they modify the structure and connectivity of pyramidal neurons. In the present study we wish to elucidate the impact of a chronic treatment of 21 days with diazepam (2mg…

0301 basic medicineCingulate cortexMaleDendritic spineDendritic SpinesPrefrontal CortexMice TransgenicBiologyInhibitory postsynaptic potential03 medical and health sciences0302 clinical medicinePostsynaptic potentialAnimalsGABA-A Receptor AgonistsDiazepamBehavior AnimalDose-Response Relationship DrugGABAA receptorGeneral NeurosciencePyramidal Cellsfood and beveragesLong-term potentiation030104 developmental biologynervous systemExcitatory postsynaptic potentialGABAergicNeuroscience030217 neurology & neurosurgeryNeuroscience letters
researchProduct

Enhanced Prefrontal Neuronal Activity and Social Dominance Behavior in Postnatal Forebrain Excitatory Neuron-Specific Cyfip2 Knock-Out Mice

2020

The cytoplasmic fragile X mental retardation 1 (FMR1)-interacting protein 2 (CYFIP2) gene is associated with epilepsy, intellectual disability (ID), and developmental delay, suggesting its critical role in proper neuronal development and function. CYFIP2 is involved in regulating cellular actin dynamics and also interacts with RNA-binding proteins. However, the adult brain function of CYFIP2 remains unclear because investigations thus far are limited to Cyfip2 heterozygous (Cyfip2+/- ) mice owing to the perinatal lethality of Cyfip2-null mice. Therefore, we generated Cyfip2 conditional knock-out (cKO) mice with reduced CYFIP2 expression in postnatal forebrain excitatory neurons (CaMKIIα-Cre…

0301 basic medicineDendritic spinesocial dominanceBiologyFilamentous actinneuronal activitylcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineexcitabilityCYFIP2Premovement neuronal activityPrefrontal cortexlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryMolecular BiologyBrief Research ReportFMR1030104 developmental biologyKnockout mouseForebrainExcitatory postsynaptic potentialNeurosciencemedial prefrontal cortex030217 neurology & neurosurgeryNeuroscienceFrontiers in Molecular Neuroscience
researchProduct

Measuring spectrally-resolved information transfer.

2020

Information transfer, measured by transfer entropy, is a key component of distributed computation. It is therefore important to understand the pattern of information transfer in order to unravel the distributed computational algorithms of a system. Since in many natural systems distributed computation is thought to rely on rhythmic processes a frequency resolved measure of information transfer is highly desirable. Here, we present a novel algorithm, and its efficient implementation, to identify separately frequencies sending and receiving information in a network. Our approach relies on the invertible maximum overlap discrete wavelet transform (MODWT) for the creation of surrogate data in t…

0301 basic medicineDiscrete wavelet transformInformation transferComputer scienceEntropyInformation Theory0302 clinical medicineWaveletMathematical and Statistical TechniquesMedicine and Health SciencesBiology (General)Wavelet TransformsTemporal cortexMammalsEcologySystems BiologyApplied MathematicsSimulation and ModelingPhysicsWavelet transformMagnetoencephalographyEukaryotaBrainSignal FilteringComputational Theory and MathematicsModeling and SimulationPhysical SciencesVertebratesThermodynamicsEngineering and TechnologyWavelet transforms ; Algorithms ; Magnetoencephalography ; Information entropy ; Signal filtering ; Ferrets ; Permutation ; EntropyAnatomyAlgorithmInformation EntropyAlgorithmsResearch ArticleComputer and Information SciencesQH301-705.5PermutationWavelet AnalysisPrefrontal CortexResearch and Analysis Methods03 medical and health sciencesCellular and Molecular NeuroscienceGeneticsEntropy (information theory)AnimalsHumansInformation flow (information theory)Molecular BiologyEcology Evolution Behavior and SystematicsDiscrete MathematicsFerretsOrganismsBiology and Life Sciences030104 developmental biologyCombinatoricsSignal ProcessingAmniotesTransfer entropyZoologyMathematical Functions030217 neurology & neurosurgeryMathematicsPLoS computational biology
researchProduct